48 research outputs found

    Automatic Approach for Lung Segmentation with Juxta-Pleural Nodules from Thoracic CT Based on Contour Tracing and Correction

    Get PDF
    This paper presents a fully automatic framework for lung segmentation, in which juxta-pleural nodule problem is brought into strong focus. The proposed scheme consists of three phases: skin boundary detection, rough segmentation of lung contour, and pulmonary parenchyma refinement. Firstly, chest skin boundary is extracted through image aligning, morphology operation, and connective region analysis. Secondly, diagonal-based border tracing is implemented for lung contour segmentation, with maximum cost path algorithm used for separating the left and right lungs. Finally, by arc-based border smoothing and concave-based border correction, the refined pulmonary parenchyma is obtained. The proposed scheme is evaluated on 45 volumes of chest scans, with volume difference (VD) 11.15±69.63 cm3, volume overlap error (VOE) 3.5057±1.3719%, average surface distance (ASD) 0.7917±0.2741 mm, root mean square distance (RMSD) 1.6957±0.6568 mm, maximum symmetric absolute surface distance (MSD) 21.3430±8.1743 mm, and average time-cost 2 seconds per image. The preliminary results on accuracy and complexity prove that our scheme is a promising tool for lung segmentation with juxta-pleural nodules

    TencentPretrain: A Scalable and Flexible Toolkit for Pre-training Models of Different Modalities

    Full text link
    Recently, the success of pre-training in text domain has been fully extended to vision, audio, and cross-modal scenarios. The proposed pre-training models of different modalities are showing a rising trend of homogeneity in their model structures, which brings the opportunity to implement different pre-training models within a uniform framework. In this paper, we present TencentPretrain, a toolkit supporting pre-training models of different modalities. The core feature of TencentPretrain is the modular design. The toolkit uniformly divides pre-training models into 5 components: embedding, encoder, target embedding, decoder, and target. As almost all of common modules are provided in each component, users can choose the desired modules from different components to build a complete pre-training model. The modular design enables users to efficiently reproduce existing pre-training models or build brand-new one. We test the toolkit on text, vision, and audio benchmarks and show that it can match the performance of the original implementations

    Spatiotemporal transcriptomic atlas of mouse organogenesis using DNA nanoball-patterned arrays.

    Get PDF
    Spatially resolved transcriptomic technologies are promising tools to study complex biological processes such as mammalian embryogenesis. However, the imbalance between resolution, gene capture, and field of view of current methodologies precludes their systematic application to analyze relatively large and three-dimensional mid- and late-gestation embryos. Here, we combined DNA nanoball (DNB)-patterned arrays and in situ RNA capture to create spatial enhanced resolution omics-sequencing (Stereo-seq). We applied Stereo-seq to generate the mouse organogenesis spatiotemporal transcriptomic atlas (MOSTA), which maps with single-cell resolution and high sensitivity the kinetics and directionality of transcriptional variation during mouse organogenesis. We used this information to gain insight into the molecular basis of spatial cell heterogeneity and cell fate specification in developing tissues such as the dorsal midbrain. Our panoramic atlas will facilitate in-depth investigation of longstanding questions concerning normal and abnormal mammalian development.This work is part of the ‘‘SpatioTemporal Omics Consortium’’ (STOC) paper package. A list of STOC members is available at: http://sto-consortium.org. We would like to thank the MOTIC China Group, Rongqin Ke (Huaqiao University, Xiamen, China), Jiazuan Ni (Shenzhen University, Shenzhen, China), Wei Huang (Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China), and Jonathan S. Weissman (Whitehead Institute, Boston, USA) for their help. This work was supported by the grant of Top Ten Foundamental Research Institutes of Shenzhen, the Shenzhen Key Laboratory of Single-Cell Omics (ZDSYS20190902093613831), and the Guangdong Provincial Key Laboratory of Genome Read and Write (2017B030301011); Longqi Liu was supported by the National Natural Science Foundation of China (31900466) and Miguel A. Esteban’s laboratory at the Guangzhou Institutes of Biomedicine and Health by the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA16030502), National Natural Science Foundation of China (92068106), and the Guangdong Basic and Applied Basic Research Foundation (2021B1515120075).S

    A Novel Method for Boundary Detection and Thickness Measurement of Two Adjacent Thin Structures from 3-D MR Images

    No full text

    Hydrophobicity Improvement of Cement-Based Materials Incorporated with Ionic Paraffin Emulsions (IPEs)

    No full text
    Cement-based materials are non-uniform porous materials that are easily permeated by harmful substances, thereby deteriorating their structural durability. In this work, three ionic paraffin emulsions (IPEs) (i.e., anionic paraffin emulsion (APE), cationic paraffin emulsion (CPE), and non-ionic paraffin emulsion (NPE), respectively) were prepared. The effects of incorporation of IPEs into cement-based materials on hydrophobicity improvement were investigated by environmental scanning electron microscopy (ESEM), Fourier transform infrared (FTIR) spectroscopy, transmission and reflection polarizing microscope (TRPM) tests and correlation analyses, as well as by compressive strength, impermeability, and apparent contact angle tests. Finally, the optimal type and the recommended dose of IPEs were suggested. Results reveal that the impermeability pressure and apparent contact angle value of cement-based materials incorporated with IPEs are significantly higher than those of the control group. Thus, the hydrophobicity of cement-based materials is significantly improved. However, IPEs adversely affect the compressive strength of cement-based materials. The apparent contact angle mainly affects impermeability. These three IPEs impart hydrophobicity to cement-based materials. In addition, the optimal NPE dose can significantly improve the hydrophobicity of cement-based materials

    Adhesion Improvement between RAP and Emulsified Asphalt by Modifying the Surface Characteristics of RAP

    No full text
    Recycled asphalt pavement (RAP) can be used in highway engineering again by cold recycled technology. Due to the aged asphalt on the surface of RAP, some problems such as poor adhesion between emulsified asphalt and RAP and the low properties of emulsified asphalt recycling mixture are easy to occur. This work aims at analyzing the aging degree of asphalt from RAP surface and improving the poor adhesion between RAP and emulsified asphalt by modifying the surface characteristics of RAP. In this work, a new device was designed to delaminate off the asphalt on the surface of RAP. The aging degree of asphalt at different layers was studied then by physical properties and molecular weight distribution. Slurry of hydrated lime (Ca(OH)2) (S-Ca) and slurry of silane coupling agent (SCA) modified Ca(OH)2 (S-Si-Ca) were used to modify the asphalt on the surface of RAP, respectively. The adhesion between emulsified asphalt and RAP was studied by contact angle and boiling method. Results show that the asphalt on the RAP surface can be successfully stripped into four layers through the self-designed RAP delaminating and stripping device. The aging degree of asphalt wrapped around the surface of the RAP showed a tendency to be gradually severe from outside to inside. However, asphalt at the innermost layer (L4) shows abnormal situation due to the fact that the light components are absorbed by the aggregate. In addition, reasonable dosage of SCA is determined as 3.0% in Ca(OH)2 powder mass. Both S-Ca and S-Si-Ca can effectively reduce the contact angle and thus improve the adhesion between emulsified asphalt and RAP. Moreover, S-Si-Ca possesses the most obvious modification effect attributed to the formation of asphalt-SCA-Ca(OH)2 structure

    Investigation on the Effect of Asymmetric Vane Spacing on the Reduction of Rotor Blade Vibration

    No full text
    A transient method to analyze blade forced response under stator-rotor wake influence is proposed in dealing with asymmetric aerodynamic load. The vibration response of the blades is calculated in the fluid-structure coupled manner for the asymmetric vane spacing. Four different types of modification are adopted in the investigation. The reduction effect on the vibration stress due to the asymmetric vane spacing is examined by comparing the response characteristics of frequency and amplitude. Though the asymmetric vane spacing does not much affect the performance of the turbine, the results show that the proper asymmetric vane spacing can decrease the levels of the excitation force at specific frequencies to control the downstream blade forced response. The stress amplitude at the vane passing frequency is decreased by 51% in the most desirable modification in the study. After investigating the vibration characteristics of the blades under the wake excitation from upstream, the mechanism of the vibration reduction due to the asymmetric vane spacing is analyzed. Copyright ? 2014 by ASME.EICPCI-S(ISTP)
    corecore